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1 Abstract

Due to the massive increase in astronomical images (such as James Web and

Solar Dynamic Observatory), automatic image description is essential for solar

and astronomical. Zernike moments (ZMs) are unique due to the orthogonality

and completeness of Zernike polynomials (ZPs); hence valuable to convert a two-

dimensional image to one-dimensional series of complex numbers. The magnitude

of ZMs is rotation invariant, and by applying image normalization, scale and

translation invariants can be made, which are helpful properties for describing

solar and astronomical images. In this package, we describe the characteristics of

ZMs via several examples of solar (large and small scale) features and astronomical

images. ZMs can describe the structure and morphology of objects in an image to

apply machine learning to identify and track the features in several disciplines.
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2 Introduction

Objects recognition in images has been developed in several disciplines (e.g.,

Goshtasby, 1985; Heywood and Noakes, 1995; Aschwanden, 2010; Zheng et al.,

2015; Moradkhani et al., 2015; Noori et al., 2019). Recently, feature extraction

for machine learning of object finding and tracking based on image moments

was investigated (Honarbakhsh and Morra, 2023). Moments are a class of image

description (e.g., Gonzaga and Ferreira Costa, 1996; Teh and Chin, 1988).

Since the image data of various fields such as biology, medicine, optics, astronomy,

and solar physics are vastly recorded, these images’ descriptions are out of manual

analysis. The image moments are quantities that describe an image’s shape,

objects, and structure.

Zernike moments (ZMs) map an image to a complex number series (Gonzalez and Faisal,

2019; Hu, 1962; Flusser, 2000; Nayak et al., 2018; Zhang et al., 2015; Doerr and Florence,

2020). ZMs are a family of orthogonal moments due to the property of Zernike

polynomial functions (Mukundan et al., 2001). Due to the exponential phase term

of complex Zernike polynomials, the magnitude of ZMs is rotation invariant. In the

lecture, a comprehensive review of Zernike polynomials and applications where

explain (Mukundan and Ramakrishnan, 1995; Belkasim et al., 1996; Zhenjiang,

2000; Gu et al., 2002; Chong et al., 2003; Sim et al., 2004; Mitzias and Mertzios,

2004; Papakostas et al., 2006, 2007; Sadeghi et al., 2021; Niu and Tian, 2022;

Capalbo et al., 2022).

Recently, ZMs have been widely used for describing the characteristics of var-

ious digital images in different disciplines (Gu et al., 2002; Chong et al., 2003;

Sim et al., 2004; Mitzias and Mertzios, 2004; Papakostas et al., 2006, 2007; Sadeghi et al.,

2021; Niu and Tian, 2022; Capalbo et al., 2022).

The ZMs, as a basis of machine learning, were applied for the identification of

solar small-scale brightenings (Yousefzadeh et al., 2016; Javaherian et al., 2014;

Shokri et al., 2022; Hosseini Rad et al., 2021) and small-scale (mini) dimmings

(Alipour et al., 2012; Honarbakhsh et al., 2016; Alipour et al., 2022). The ZMs

are valuable features for classifying solar flaring and non-flaring active regions

(Raboonik et al., 2016; Wheatland et al., 2017; Alipour et al., 2019) that developed

a tool of solar flare for casting.

The layout this paper is: Sections 3 and 4 describe the Zernike polynomials and

Zernike moments, respectively. Section 5 provides an overview of Python code.

Section 6 gives the conclusions.
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3 Zernike polynomials

The ZPs are a complete set of orthogonal continuous functions in a unit disk. The

even ZPs with order = and repetition < in the polar coordinate are given by

/%?@ (A, \) = '?@ (A) cos(@ \) (1)

and the odd ZPs function is defined by

/%?−@ (A, \) = '?@ (A) sin(@ \) (2)

where the radial distance in a unit circle is 0 ≤ A ≤ 1 and the azimuths angle is

0 ≤ \ ≤ 2c.

The radial polynomials for a given set of ? and @ are defined by

'?@(A) =

?−@
2
∑

:=0

(−1): (? − :)!

:!
( ?+@

2
− :

)

!
( ?−@

2
− :

)

!
A ?−2: (3)

in which ? − @ = even and |@ | ≤ ?. The ZPs satisfy the following orthogonality

property as,

∫

2c

0

∫

1

0

+∗
?@+?′@′A3A3\ =

c

? + 1
X??′X@@′ , (4)

where X indicates the Kronecker delta function.

Figure 1 represents the radial function '?@ for a set of ? and @ in versus radial

distance of polar coordinate. We observe that the radial functions increase oscil-

lations by increasing the order number ?. This property of ZPs’ radial functions

is one of the main reasons for applying the ZMs to describe an image in a polar

coordinate.

Figure 2 displays /?@ for a set of order number ? = 0, 1, 2, and 3 in polar

coordinates. The figure shows that each Zernike polynomials have unique radial

and azimuthal structures in polar coordinates. This essential characteristic of

Zernike polynomials is the main reason for describing an image based on the set

of complex Zernike polynomials (combination of even and odd Zernike functions

in complex number plane), which maps to a unit circle.
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Figure 1: The radial function '?@ for a set of ? and @ in versus radial distance of

polar coordinates.

4 Zernike Moments

The reason to describe an image by a set of functions is due to The uniqueness

theorem. This theorem explains that the moments are uniquely discriminated

for a given image (Gonzaga and Ferreira Costa, 1996). Contrariwise, we can

reconstruct the original image using the set of moments. Moments can specify the

properties, such as the centroid of an image, its orientation, and the geometry of the

objects. Raw and central moments were defined by Gonzaga and Ferreira Costa

(1996); Grubbström and Tang (2006).

The Zernike moments (ZMs) express an image in a set of complex numbers using

the Zernike polynomials +?@ = /%?@ ∗ (even) + 8/%?@ (odd) (Mukundan et al.,

2001). The image coordinates (G, H) must be transformed into the polar coordinate.

The circle’s center in polar coordinates is the centroid of an image. For an image

function � (A, \), the ZM is given by,

/?@ =

? + 1

c

∫

2c

0

∫

1

0

� (A, \)+∗
?@A3A3\. (5)
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Figure 2: The Zernike polynomial /?@ for a set of order number ? = 0 (first row),

? =1 (second row), ? =2 (third row), and ? =3 (fourth row).
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For a digital image with M × N pixels, the ZMs are introduced by

/?@ =

? + 1

c

"−1
∑

8=0

#−1
∑

9=0

� (8, 9)'?@ (A8 9 ) exp(−8?\8 9 ), (6)

where A8 9 =
√

G2

8
+ H2

9
and \8 9 = arctan(

H 9
G8
) are the image cell mapped to a unit

disk (Wolf et al., 2011).

The Zernike moment array includes elements for a set of order ?=0 to a maximum

order number %max. So, the length of Zernike moments (#/"B) is introduced by

(Alipour et al., 2019)

#/"B =

%max
∑

?=0

(? + 1). (7)

The reconstructed image (�') is given by an inverse transformation Khotanzad and Hong

(1990) as follow,

�' (A, \) =

%max
∑

?=0

∑

@

/?@+?@ (A, \) . (8)

Using the original and reconstructed images, we obtain the reconstruction error as

e2(I, IR) =

∑M−1
i=0

∑N−1
j=0 (I(i, j) − IR(i, j))

2

∑M−1
i=0

∑N−1
j=0 (I(i, j))2

. (9)

Figure 3 shows a full disk AIA image at 171 Å inset a solar coronal bright point

and the Zernike moments’ maximum order 25. The Zernike moments include

the imaginary and real parts (panel b). The structure of the moment series is

represented by the absolute normalized Zernike moments versus labels.

Figure 4 represents an original (face) image and reconstructed images with different

maximum order numbers. We observe that the reconstructed image at %max=

10 deviated from the original image, but the reconstructed image at 45 well

matched the original image. Also, increasing the maximum order number of the

reconstructed image showed noisy image may be due to the discrete behavior of a

digital image.
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Figure 3: The full disk AIA image at 171 Å that inset a solar coronal bright point

(a), the imaginary and real parts of Zernike moments for a maximum order number

of 25 (b), and the absolute normalized Zernike moments versus labels (?, @) (c).

Original Image Pmax=10 Pmax=45 Pmax=46

Figure 4: From left to right panels represent the original (face: Hossein Safari)

image and reconstructed images with the different maximum order numbers (%max=

10, 45, and 46), respectively.

7



Original image
P

 max
=9 P

 max
=16

P
 max

=21 P
 max

=31 P
 max

=46

2014 Sep 10

Figure 5: An active region (sigmiod: left top panel) from SDO/AIA at 94 Å. The

reconstructed images for %max= 9, 16, 21, 31, and 46 (Alipour et al., 2019).

Figure 5 displays a solar active region (AR) in Solar Dynamics Observatory/Atmospheric

Imaging Assembly (SDO/AIA) at 94 Å. An sigmiod event and the reconstructed

images with various maximum order numbers (%max) are shown. For small

%max(< 10), the overall shape of the sigmiod was reconstructed. We observe

that with increasing the %max, the reconstructed image approaches the original

image at %max (= 31). We also see that the reconstructed image deviates from the

original for large %max (= 46).

Figure 6 shows the original and reconstructed images with the different maximum

order numbers for a spiral galaxy (top row), elliptical galaxy (middle row), and

irregular galaxy (bottom row). We find the minimum reconstruction error for

%max= 45 for spiral, elliptical, and irregular galaxies. For more or less value

than 45, the reconstructed image deviated from the original image. In the case of

minimal reconstruction error, we expect to well match objects, shapes, and their

orientations or morphologies in reconstructed images and original images.

ZPs include orthogonal functions; hence moments give the properties of an image.
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Original Image Pmax=10 Pmax=45 Pmax=47

Original Image Pmax=10 Pmax=45 Pmax=47

Original Image Pmax=10 Pmax=45 Pmax=47

Figure 6: From left to right, panels represent the original and reconstructed images

with the different maximum order numbers (%max= 10, 45, and 47), respectively,

for a spiral galaxy (top row), elliptical galaxy (middle row), and irregular galaxy

(bottom row). Recorded by SDSS survey.
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Figure 7: A solar active region indicated by a white box of the EUVI images at

195 Å recorded by STEREO-A (Left top) and STEREO-B (Left bottom). The

normalized absolute values of the Zernike moments for %max=31 (Alipour et al.,

2019).

Due to the Fourier term in the azimuthal angle function, the absolute value of mo-

ments is independent of the objects’ rotation angle in the image. Space missions

and ground base instruments observe solar features from various perspectives and

scales. The Soho was in the first Lagrangian point of the Sun-Earth. STEREO A

and B are in Earth’s orbit. Figure 7 presents the ZMs of an active region observed

by two STEREO A and B. The ZMs are similar from two different viewpoints.

The block structures of the ZMs series are identical, with slight differences. These

trivial differences may be due to the digital rather than the continuous image.

Applying a transformation (to the image centre of brightness) and image normal-

ization, ZMs will be translation and scaling invariances, respectively (see, e.g.,

Khotanzad and Hong, 1990)

The SoHO/EIT and SDO/AIA resolutions are 0.6 and 2.4, respectively. The ZMs

for the active region (Figure 8) with various resolutions are slightly similar. It

seems the ZMs are functions of the morphology and geometry of the objects and

depend less on the object’s size.
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Figure 8: The white boxes represent of an active region observed by SDO/AIA

image at 193 Å (Left top panel) and SoHO/EIT (Left bottom panel).(Right) The

normalized absolute value of Zernike moments for two SDO and SoHo views

(Alipour et al., 2019).
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————————————

5 Python code for ZMs

The Python code is available at Github (https://github.com/hmddev1/ZEMO)

and PyPI (https://pypi.org/project/ZEMO/1.0.0/). The Python code cal-

culates ZMs for a given image. Alipour and Safari (2015) and Alipour et al. (2019)

used the primitive code for calculating ZMs of solar features. The code includes

the following functions:

• The zernike order list function calculates factorials, ? (order numbers)-

indices, and @ (repetition numbers)-indices for a given maximum order

number of Zernike polynomials.

• The robust fact quot function removes common elements from lists and

calculates product quotients.

• The zernike bf function generates Zernike basis functions stored in a complex-

valued grid.

• The zernike mom function calculates Zernike moments by summing the

product of the image and basis functions.

• The zernike rec function reconstructs an image by summing the weighted

Zernike basis functions via ZMs.

The code includes checks for data validity, such as square image size matching,

and prints informative error messages.

6 Conclusion

The Zernike polynomials indicate the distance along the radius and azimuthal

angle. Equation (5) shows the image function weighted by the radial part A'?@ (A).

We note that |'?@ (A) | < 1 and |A'?@ (A) | < A within a unit circle that shows that the

edge’s pixels have more extensive weights than the center pixels. The higher-order

Zernike polynomials will show more oscillations to extract information on the

image details along the radius from the origin to the perimeter (Shutler and Nixon,

2001).

Why are ZMs helpful in expressing an image?
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• The Zernike basis is orthogonal and complete set functions, so ZMs are

unique quantities features.

• We may reconstruct the original image by a finite number of moments.

• ZMs are slightly sensitive to noises.

• The magnitude of ZMs is rotation invariant. Image normalization makes

translation and scale invariants for ZMs.

These reasons showed the capability of ZMs to describe an image to apply machine

learning to identify and track the features in several disciplines. We published the

Python code via Github and PyPI.
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